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1. INTRODUCTION

There exist several works in the literature on the performance measures of

minimum weight spanning trees in networks with randomly weighted arcs.

Among these are Frieze [5], and Jain and Mamer [6]. Each of these papers relies on

identically distributed arcs, special graph structures, asymptotic exponentiality of

lower order statistics, and the greedy minimizing algorithm to characterize

performance trends as the size of the network grows. In Kulkarni [71, a method was

developed for producing exact probability distributions of the minimum weight

spanning tree's weight when the network has general structure with nonidentical,

exponentially distributed weights. Kulkarni constructs a Markov process whose

sample paths are the probable execution paths of Krushal's minimum weight

spanning tree algorithm. Several useful by-products emerge from this method,

including methods for deriving moments, criticality indices, and conditional

distributions. In [2], this method is extended to general matroids with exponentially

distributed element weights. The problem Ltudied was to find the distribution of

the weight of the minimum weight basic element in a matroid, as well as criticality

indices and moments.

In this work, we endeavor to extend the Markov process method to solve

matroid maximization problems. Although matroid theory usually addresses

maximization problems, there exists only a small amount of literature concerning

maximization problems with random element weights, and none concerning

analytic methods for matroid maximization. Applications of this method will

include maximum weight spanning trees, maximum weight transversals useful in

assignment problems (solutions and heuristics), optimal scheduling, and flow

network synthesis.



2. MATROID COMBINATORICS

In this section we concisely describe the combinatorial underpinnings required

to explore matroid maximization. A less terse treatment of the subject of matroids

and their applications may be found in Lawler [8]. This section will cover matroid

greedy algorithms, matroid structures, and dual matroids.

Let E be a set of objects such as vectors, nodes, or arcs. M is a set of subsets of F

with the following two properties:

2.1) Y e MandXcY, thenXe M;

2.2) for every subset A of E, (X CA: X e M: there exists no xe A such that X U

{x] e M is a set of equicardinal sets.

Mis called the set of feasible elements. Property 2.1 says every subset of a set in

M is in M. Thus M is called simplical. Property 2.2 dictates that for every A c E,

every maximal feasible subset of a set A contains the same number of elements. We

will denote the set of maximal elements in M as /3M, called the basis of M and will

call members of PM basic elements. We will consistently use n to denote the

cardinality of a basic element.

Properties 2.1 and 2.2 combine to guarantee that we can begin with the empty set

0, and construct any set in Pm by making n selections from the set E. We will

perform this construction of a basic element by greedy minimization.

Let v be a nonnegative weight function on the set E, v: E -- 9?t. The linear

objective function (o on elements of M is given by

(o(x) = I v(x)
rXX

for each X E M. The notion of greediness is formalized by the following algorithm:
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0. initialize: X = 0, 0) = 0
1. x -- a rg maxy: X UYCM v (y)

2. w <-- w + v(x)

3. X &-X ux

4. if X r/, then go to step 1

5. stop

Figure 1. The Greedy Algorithm

Verbally, the greedy algorithm begins with the empty set X = 0 and at each stage

selects the element xeE-X with smallest weight, subject to the constraint that X u,

{x} is in -M. Let ,C be the basic element constructed by the greedy algorithm, XG =

{; Ix2,...,x'} where x' is the element selected at the ith opportunity. Let

1 2..,x be the set of the first i greedy selections. Note that the terminal

value of co is equal to co(X'), the linear objective function value of XG. The critical

connection between the greedy algorithm and matroid structures is given by the

following theorem, directly adapted from results of Edmonds [3].

Theorem 1. Let (o be a linear objective function for an arbitrary nonnegative weight

function v, then Xc = arg minYEw(Y) if and only if M is a matroid.

Proof. See Lawler [8].

The above theorem holds for finding the minimum weight basic element as

well, where "arg min" replaces "arg max" in the greedy algorithm.

In [2], the matriod minimization problem was investigated. A method was

given for finding the joint distribution (Fx(t), Xe M,t>_O), where Fx(t) =

P[XG=X,G(XG) _tJ, when (v(x): xeE) is a set of independent, exponentially distributed

random weights. This was achieved by constructing a Markov process Z with

absorption time distributions Fx(t) =P(t) = X for each XeJM. We will now use

3



results concerning dual matroids to produce similar results for matroid

maximization problems.

Theorem 2. (Minty) Pm, = [X, = E - X: Xef3 M) in the basis of a matroid. This

complementary matroid is called the dual matroid of M.

Proof. See Lawler [8, p.277 ]G
Corollary 1. XG -E-XG is the maximum weight basic element in /ig.

C

Proof. Let T = v(x), then co(X= T-oXG) >T-oXX) = oXXc) for all XEf3M •.
XEE I

Thus, by identifying the minimum weight basic element in M, we may find the

maximum weight basic element in the dual matroid Mc. In the sequel, we will

consider the case where the set (v(x): xeE) is a set of independent, exponentially

distributed random variables.

To explain our restructured objective function, we must discuss the concept of

rank. Let S c E. The cardinality of a maximal feasible subset of S is called the rank of

S, denoted r(S),

r(S) = maxxcs, xE M X I

Restating property 2.2, for any set S c E, {X c S: X c= M and I XI = r(S)} is the basis of a

matroid, the one generated by contracting Mby E - S. Thus, r(E) = n. Let nc = I E I - n,

and note that nc is the cardinality of a basic element in M, or the rank of E with

respect to Mo

We will consider the case where the weights of tIhe ground set elements are

random variables with known distributions. Our goal is to model the behavior of

the greedy algorithm as a stochastic process. Previous attempts have been thwarted

by the complexity of the conditioning arguements required to do this. Every greedy

selection yields information about the elements not selected as well as the selection

made, so that analyzing the algorithm in its current state would involve managing

all of the information concerning the residual costs of nonselected elements at each
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stage. We will not face this problem directly, choosing instead to reformulate the

matroid maximization problem by restructuring the objective function a.

Our new objective function, denoted (OD and named the dual discounted

objective function, is defined on all subsets of E;

CD(S) max v(x)+ {[n- (IS - r(S))][max,,sv(x)]}.
Xcs,XEM,I XI=,(S) XES-X

This objective function, though rather unusual in appearance, comes directly from

performing the straightforward algorithm shown in figure 2, called the dual greedy

algorithm with discounting.

0. initialize: X = Xc = S = 0, oi 0, u(x) = v(x) for each x e E

1. x -- arg "1inx.E-s u(x')

2. S - S u x

3. if X u (x) e [
X <--X (,,[xI

else

4. w <- w + [n, -(ISI-r(S))]u(x)

5. u(y) ( u(y) - u(x) for all y e E- S

6. if S eE, go to step 1.

7. stop

Figure 2. The Dual Greedy Algorithm with Discounting

Verbally, the dual greedy algorithm with discounting starts with three empty sets, X,

Xc, and S. One by one, x, the minimum weight element of E - S is determined. If

adding x to X is feasible with respect to M, it is added. Otherwise, x is added to the

complementary set Xc,. In either case, x is added to the set S, and all , elements

remaining in E - S are discounted further by the current discounted value of x. The
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remainder of this section is dedicated to showing that, at termination of the above

algorithm, w = axyE.w(Y) and that Xc is the maximum weight basic element of

Lemma 1. Given sets S, X, and Xc constructed of some stage of the dual greedy

algorithm with discounting,

Proof. By property 2.2, we know that I X I r(S) at every stage of the algorithm.

Thus, I X, S -F(S) always, while XC i nc because Mc is a matroid, hence it

has equicardinal basic elements. Because Xc. E-XG and XcXC, Xc c X c and the

lemma follows.

Thus, at each stage of the dual greedy algorithm with discounting, we claim that

X, is a subset of the maximum weight basic element of Mc, and that there are exactly

ti,- ( S - r(S))] elements in the set E-S which we will add to Xc to form XC . Each of

these renaLning ,lements has value of at least niaxys v(y) Thus each element of

C
XC has been discounted by maxyes v(y), so the sum of these discounts is

I[n,- (IsI - r(S))]mttaxy, s Vk /y).

Example 1. Understanding the operation of the dual greedy algorithm with

discounting is facilitated by the diagram in Figure 3, illustrating the operation of the

discounted greedy algorithm for the matroid with basis 3m = ({x2, X4), (xI, X4), (x4, X5,

(x 3 , x5}}, thus /M, ((xI, X3, X5), (X2, X3 , X5), {XI, X2, X3), (XJ, X2, X4 ) ?z= 2 , nc = 3. The

values of the weight function v are given in the first line of table 1. By inspection,
G

X6 = (xI, x4) and thus {x2, x3 , X5) = Xc . The shaded area in the figure indicates the

magnitude of the value of Co({x 1 , x2)) which is 21. This value is the sum of v(x2) plus

the discount taken from the v(x3) and v(x5), which we will eventually absorb. Table

6



I S'.LOwS the execution path of the dual greedy algorithm with discounting on :I

wvith the weights specified.

'(x) = 

I ' I I z'(x2) = 7

Z'(X.3) =

z'(x 4 )= 12

Shaded area = ,(/x1 ,x-})

Figure 3. Accumulating Cost in the Dual
Greedy Algorithm with Discounting

TABLE 1. THE EXECUTION OF DUAL GREEDY ALGORITHM WITH
DISCOUNTING

4 '. '2 ' '4
' ; 

{ I'. ",' {2 '' : ; 32 4 7

Theorem 3. Let the dual greed' algorithm with discounting terminate with sets X,

X,, and the value o). Then

i) X X6 = the maximum weight basic element in M.

ii) X-= X., = the maximum ,'eight basic element in M.
iii) (= z mX..

C
x cX.
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Proof. Statement i is a direct result of theorem 1. Statement ii is true by using

statement i in conjunction with the corollary to Minty's theorem on matroid duals.

Statement iii relies on lemma 1.

3. MATROID MAXIMIZATION WITH EXPONENTIALLY DISTRIBUTED
ELEMENT WEIGHTS

The motivation for developing the dual greedy algorithm with discounting is

that, given that the element weights are independent, exponentially distributed

random variables, the execution paths of the algorithm are the sample paths of a

Markov process. Let (V(X): XcE) be a set of independent, exponentially distributed

weights with rates [Ax): xe E}, and WD be the associated stochastic dual discounted

objective function.
IEi

Let Z be a Markov process with state space 2 ,initial state 0, absorbing state E,

and transition rates given by

= nc - (I S I ) (3.1)

for any set S # E. The elements of the lower half of Q are all zero, and the diagonal

elements are always -1 times the sum of the elements in the row.

Theorem 4.

PIZ(t) = El = {WD (XC t]

Proof. By the construction of the dual greedy algorithm with discounting, we have

that for any set of realizations of (V(x):Xe E) and at any stage of the algorithm, the

increase in the value of WD upon the next iteration is given by

Inc- (IS1 - r(S))] min u(y)
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At the outset, u(y) = V(y) for each yeE. As elements are added to the set S, the

operation u(y) <- u(y) - u(x) is performed, where u(x) = min u(y). Thus for y 0 S after

iteration k, u(y) is the residual value of y given that V(y) is not one of the k smallest

members of (v(y'):y'E E). Thus, by the strong Markov property, each y G S has

u(y)-exp(A(y)). Hence, given transition times "T1, r2, ...., Ti,

P[Z('l) = SU xJ~Z('r) = s]

= P[u(x)< u(y) for all y ( E - S,[n, - (ISI - r(S))]u(x)< r, - T,]

(x) -exp[_ (.

yEE-S

._Qs's'J(X e QS, S

Hence, the sojourn time in each state is exponentially distributed, and the Markov

process with rate matrix Q has the property that its absorption time and W4X,) are

identically distributed.

In the suceeding sections, we will apply this theorem to two important matroids.

We can derive the distribution of W GQ4 as the time of absorption of the

Markov process Z. The remaining issue to resolve is which element of fM is

optimal. It is clear that the sample path of Z will reveal the optimal element of PMC,

it is the element whose complement is contained in S at the earliest stage. We will

determine this element using the embedded Markov chain of Z.

Truncate the statespace of Z so that each state containing an element in P3M is

absorbing, calling the new process Z'.

9



Corollary 2: For any S c E containing an element X of 3M,

PIZ' is absorbed in S]

PIX = XG]
=PIX c =XCGI

The astute reader will realize that implementing the method suggested in corollary

2 is quite wasteful. What is truly being identified by Z' is the minimum weight

element in the primal matroid M. This is the focus of the companion work, [2]. We

draw the connection in the following corollary.

Corollary 3. Let (Yj, j>O) be a Markov chain with Yo = 0 and transition probability

matrix given by

,A(x) for X, Xu{x}Ef.

with the elements of the lower half of P are all zero, as are all of the diagonal

elements. Then P[y = X] = [xc = xi].

Proof. There exists a Markov process Z" on statespace M such that Z"(O) = Oand Z"

is controlled by the generator Q" given by

Q- - A.(x)

for X u [x) in M. This process has the property that PIZ"(t) = X e M]= PIXG = X,

W(XG) _ t]. This is the fundamental result of [2], and is provable using techniques

very similar to those used in theorem 3.1. Note that I X I = r(X) due to the restricted

statespace of Z". The embedded Markov chain of Z", which we denote by Y, has

transition probability matrix given by

X (n-IXl)I(x) _ 2(x)Pxx,, = y_,(y)(n- Ix) y_(Y)
0 Y:XUjY}EM

10



Thus,

limtoP[Z"(t) = X e f9d 1= P[Yn = X1 = P[xc = X"j.

Corollary 4.

Xe Xfj] = P~xe YJ.

for all x e E.

This last corollary gives the probability that an element of E is a member of the

maximum weight basic element, a probability often referred to as the criticality

index of the element in question. Criticality indices can play a major role in

allocating resources to improve the performance of a matroid maximization, as

P[x E X"] WD(XC) # o]

4. AN EXAMPLE iN SCHEDULING

The second most widespread use of weighted matroids is in the area of

production scheduling on a single processor. This problem is solved using the

transversal matroid of Edmonds and Fulkerson [4] on a convex bipartite graph.

Suppose that we have N tasks with earliest starting times bl, b2, ..., bN and latest

permissible completion deadlines di, d2, ..., dN. We have a single machine on which

the tasks can be performed, each task taking one unit of time. The premium paid

for accomplishing job i on time is v(i), no premium is paid if a job is not processed

in its permissible time interval. Our goal is to schedule all of the jobs so that the

sum of the paid premiums is maximized. We will construct a matroid so that the

maximum weight basic element gives the optimal schedule.

Let T, = (1, 2, ..., maxi(di)} and T2 = (1, 2, ..., N). Let (TI, T2, A) be a bipartite graph

where (tk)EA if bk _ t -dk, that is, job k is connected to every time period in which

11



it may be scheduled. A maximum benefit schedule consists of a matching of time

periods to tasks, where any task matched to a time period leads to payment of the

associated premium. As a matter of interest, the reader should know that bipartite

graphs where (t: (t,k) eA) is a set of consecutive integers for each kG T 2 is called

convex.

The following policy always generates the optimal schedule:

POLICY: Choose the remaining task with the highest premium and attempt to
schedule it with the other tasks chosen thus far. Stop when this cannot be
done.

Thus Mc = (XcT 2 : X matches to some subset of T2 }. For illustration, let us

consider six tasks given in Table 2.

TABLE 2. TASKS, STARTING TIMES, DEADLINES, AND PREMIUMS

TASK BEGIN DEADLINE PREMIUM
1 1 1 6
2 1 2 9
3 2 3 12
4 1 2 4
5 2 4 6
6 3 4 8

This set of tasks and deadlines leads to the convex bipartite network given in

Figure 4.

The dual greedy algorithm with discounting will follow the execution path 0,

(4), then either (1,4), or (4,5) (there is a tie), it will then continue until all tasks are

scheduled and yield the value oD (XcJ as (OD((1,2 ,3 ,6)) = )D([2,3 ,5,6)) = 35.

12



TIME TASKS
PERIOD (PREMIUM)

-.. -- 1 (6)
12 (9)

2 3 (12)

3 4 (4)

4N 
5 (6)

46 (8)

Figure 4. Convex Bipartite Graph Connecting Tasks to Time Periods

Now suppose that each benefit is exponentially distributed with mean equal to

the benefit in Table 2. We constructed the Markov process Z as per equation 3.1, and

computed performance measures. Figures 5 and 6 give the density and distribution

functions, resp., for the random benefit of the optimal schedule.

1.0-

0.8

0.6

0.4

0.2

0.0,
0 20 40 60 80 100

t

Figure 5. The Distribution of WD(XG)
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0.03

0.02

0.01

0.00 1 V1I
0 20 40 60 80 100

t

Figure 6. The Density Of WD(XC'

The density shows a mode near 40, with a fairly generous tail to the right. The

shape of both the density and the distribution function are typical for small

applications.

The moments of WrQXGJmay be found using a following simple recursive

formula. Let 's(k) be the k-th moment of the time required to move from S to E,

then

s~k)=_ S, :s~k-1) ,Qs,su{x}'S x

((k xE-S

"TE(k ) 0

for any integer k. Hence, the k-th moment W G is given by r(k), see [1] for

details. This formula gives us that the expected value of W{X J = 41.025. This

value dominates the maximum premium in the deterministic model by 14%. It is

trivial to show that the greater the number of tasks, the larger this percentage is,

even if the additional tasks have lower expected values.

14



Table 3 gives the probability that each basic element in Mc is the optimal

schedule selection. These values were found by computing the probabilities of

absorption in the discrete time Markov chain with transition probability matrix P as

given in corollary 3. From these absorption probabilities, we compute the criticality

indices shown in the bar graph given in Figure 7. In this context, the criticality of a

task is the probability that it will be undertaken by a premium maximizing

scheduler.

15



TABLE 3. THE PROBABILITY OF ABSORPTION FOR EACH BASIC ELEMENT IN
MC

0.109671 11,2,3,5)
0.158153 (1,2,3,6)
0.049650 11,2,4,5)
0.096890 (1,2,5,6)
0.053577 [1,3,4,5)
0.076736 11,3,4,61
0.103941 11,3,5,6)
0.080366 [2,3,4,5)
0.115104 12,3,4,6)
0.155911 (2,3,5,6}

Criticality indices are interesting even for small problems. In the deterministic

premium model task four would never be undertaken, yet its criticality is well over

1/3. Also, with deterministic premiums, we would have tasks two, three, and six

always scheduled, and these criticalities are between 70% and 86%, far short of

certainty.

16



1.0 U-)

U-,O

LO C

0.8

0.6-

0.4

0.00.0

1 2 3 4 5 6

Task x

Figure 7. Criticality Indices

5. AN EXAMPLE IN SPANNING TREES

The best known application of matroid optimization is the optimal spanning

tree problem. As mentioned above, the minimum weight spanning tree problem

has been studied extensively, with the exponentially weighted case investigated in

Kulkarni [7].

Let (N,A) be as graph, N being the set of nodes and A being the set of arcs. We

wish to find a set of arcs such that there is a unique path from every node to every

other. This set is called a spanning tree, and is of obvious interest to

communications system designers, among others. Let I N I = nc + 1, so that any

17



spanning tree has n, arcs. Suppose that each arc has a value v(e), ee A, and that we

wish to find the maximum weight spanning tree in the network. The following

policy, attributed to Kruskal, see Welsh [91, always finds the maximum weight

spanning tree:

POLICY: At each stage, select the highest-valued unselected arc such that the
set of selected arcs has no cycles.

Thus, Mc = IX C A: there are no cycles in (N, X)), and fM c is the set of spanning trees,

hence 3M is the set of complements to spanning trees. We will illustrate using the

network in Figure 8.

a

be

d f

Figure 8. Network for Spanning Trees

TABLE 4. ARCS AND WEIGHTS FOR SPANNING TREES

arc x E[V(x)]

a 15

b 21

c 13

d 17

e 21

f 19

18



Using the values given in table 4 as deterministic weights, the algorithm will find

the maximum weight spanning tree to be (b, d, e, f}, with a deterministic weight of

76. If the weights are exponentially distributed, the distribution function and

density of the weight of the maximum weight spanning tree are given in figures 9

and 10, resp. The expected maximum weight is 107.58, dominating the optimal

solution for deterministic weights by 42%.

1.0-

0.8

0.6

0.4

0.2

0.0
0 100 200 300

t

Figure 9. The Distribution of the Weight of the
Maximum Weight Spanning Tree
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0.010-

0.008-

0.006

0.004

0.004

0.002-

0.000 l I
0 100 200 300

t

Figure 10. The Density Function of the Weight of the
Maximum Weight Spanning Tree

Using the results on the embedded Markov chain, we can calculate the probability

that a given basic element is optimal, as well as criticality indices for each of the arcs.

TABLE 5. ABSORPTION PROBABILITIES

P X = xC X

0.12484294 (a,b,d,e}
0.08179365 {a,b,d,f}

0.13953035 {a,b,e,f}

0.06459315 {a,c,d,e)

0.04229344 (a,c,d,f)
0.07214763 {a,d,e,f)

0.08365758 (b,c,d,e)

0.10819722 {b,c,d,e}
0.07088783 {b,cd,f)

0.12092630 (b,c,e,f}

0.08116990 (c,d,e,f}

These results are given in table 5 and figure 11. Several of the basic elements

are nearly equally probable as optimal solutions, with probabilities between 0.10 and

20



0.14, and none of the basic elements could be said to be extremely unlikely to be

optimal. As for the criticality indices, arc e will be a member of the optimal solution

80%/ of the time, while all of the arcs are at least 50% probable to be included.

1.0-

UU

0.8- e9

--

0 0.4-

0.2

0.6- u-

a b c d e I

X

Figure 11. Criticality Indices

6. CONCLUSION

In this work, we have studied the stochastic behavior of the the greedy

algorithm on matroids when the ground set element weights are random variables,
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especially when they are independent exponentials. We showed that, by

restructuring the algorithm to a dual minimization algorithm with a discounting

mechanism, we could model this new algorithm as a Markov process. This Markov

process has absorption times which are distributed identically with tiLe weight of the

optimal basic element in the matroid. Using the embedded Markov chain, we are

able to calculate the probability that a each basic element is optimal, and we can

derive criticality indices for each of the ground set elements.

The results we have provided are applicable to any matroid. To suggest

applications, we provided two well known examples of matroid maximization, the

transversal mafroid used in optimal scheduling and the graphic matroid used to

find maximum weight spanning trees. A large portion of the applications of

matroid theory are reducible to one of these two examples.
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TABLE 4.2. THE SAMPLE PATH THE ALGORITHM WILL FOLLOW

XrpmXe pm 0)D(Xd) 0)X)

(1,2,3,51 {4,61 31 14

(1,2,3,6) (4,5) 35 10

(1,2,4,5) {3,6) 25 20

11,2,5,61 (3,4) 29 16
(1,3,4,51 (2,6) 28 17

(1,3,4,6) 12,5) 30 15

{1,3,5,61 (2,4) 32 13
(2,3,4,51 (1.6) 31 18
(2,3,4,6) f1,5) 33 12

12,3,5,61 (1,4) 35 10
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